631 research outputs found

    T1ρ and T2 relaxation times predict progression of knee osteoarthritis

    Get PDF
    SummaryObjectiveTo evaluate whether T2 and T1ρ relaxation times of knee cartilage determined with 3T magnetic resonance imaging (MRI) at baseline predict longitudinal progression of cartilage degenerative changes.MethodsQuantitative analysis of cartilage was performed using 3T MRI with both T2 and T1ρ mapping techniques in 55 subjects without evidence of severe osteoarthritis (OA) [Kellgren–Lawrence (KL) score of 0–3] at baseline. Morphological abnormalities of cartilage, menisci, ligaments and bone marrow were analyzed on sagittal fat-saturated intermediate-weighted fast spin echo (FSE) sequences. Progression of degenerative changes was analyzed over a period of 2 years. Progression was detected in 27 subjects while in 28 subjects no changes were found. Differences between T2 and T1ρ relaxation times in these two cohorts were compared using one-way analysis of variance (ANOVA) and t tests.ResultsBaseline T2 and T1ρ values were significantly higher in the progression cohort in all compartments (P < 0.05) except the lateral tibia (LT) for T2 and the medial tibia (MT) for T1ρ. Progression of cartilage degenerative disease was most pronounced at the medial femoral condyles and at the femoro-patellar joint; differences between the two cohorts for T2 and T1ρ were also most significant in these compartments.ConclusionsT2 and T1ρ measurements were significantly higher at baseline in individuals that showed progression of cartilage abnormalities over a period of 2 years and may therefore serve as potential predictors for progression of degenerative cartilage abnormalities in knee OA

    Delineation of Cavity in Downstream Surge Chamber at Punatsangchhu-II Hydroelectric Project, Bhutan

    Get PDF
    On 3rd March, 2016, there occurred a massive roof fall incidence in one of the major caverns of Punatsangchhu-II Hydroelectric Project (PHEP-II), Bhutan which halted the operations in the major caverns and required additional strengthening measures. Prior to concluding anything on the treatment measures for the muck flown into the cavern and the cavity formed over the crown of Downstream Surge Chamber, there was a strong need to determine the extents of cavity. Even to understand the influence of cavity formation on adjacent caverns, the cavity needs to be delineated. Therefore, the management of PHEP-II adopted several techniques to decipher the shape and dimensions of the cavity like, surveying, geophysical, cross-hole seismic surveys, borehole scanning, and exploratory drilling. The tentative shape of the cavity could finally be established. The findings from each method are explained in this paper

    Processing of aluminum-graphite particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Journal of Materials Engineering and Performance 18(9) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting (MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated. The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (e) is obtained compared with composites produced by conventional processes.EPSR

    Quantifying spatio-temporal variation in aquaculture production areas in Satkhira, Bangladesh using geospatial and social survey

    Get PDF
    Despite Bangladesh being one of the leading countries in aquaculture food production worldwide, there is a considerable lack of updated scientific information about aquaculture activities in remote sites, making it difficult to manage sustainably. This study explored the use of geospatial and field data to monitor spatio-temporal changes in aquaculture production sites in the Satkhira district from 2017–2019. We used Shuttle Radar Topographic Mission digital elevation model (SRTM DEM) to locate aquaculture ponds based on the terrain elevation and slope. Radar backscatter information from the Sentinel-1 satellite, and different water indices derived from Sentinel-2 were used to assess the spatio-temporal extents of aquaculture areas. An image segmentation algorithm was applied to detect aquaculture ponds based on backscattering intensity, size and shape characteristics. Our results show that the highest number of aquaculture ponds were observed in January, with a size of more than 30,000 ha. Object-based image classification of Sentinel-1 data showed an overall accuracy above 80%. The key factors responsible for the variation in aquaculture were investigated using field surveys. We noticed that despite a significant number of aquaculture ponds in the study area, shrimp production and export are decreasing because of a lack of infrastructure, poor governance, and lack of awareness in the local communities. The result of this study can provide in-depth information about aquaculture areas, which is vital for policymakers and environmental administrators for successful aquaculture management in Satkhira, Bangladesh and other countries with similar issues

    Global impact of nitrate photolysis in sea-salt aerosol on NOx, OH, and O3 in the marine boundary layer

    Get PDF
    Recent field studies have suggested that sea-salt particulate nitrate (NITs) photolysis may act as a significant local source of nitrogen oxides (NOx) over oceans. We present a study of the global impact of this process on oxidant concentrations in the marine boundary layer (MBL) using the GEOS-Chem model, after first updating the model to better simulate observed gas-particle phase partitioning of nitrate in the marine boundary layer. Model comparisons with long-term measurements of NOx from the Cape Verde Atmospheric Observatory (CVAO) in the eastern tropical North Atlantic provide support for an in situ source of NOx from NITs photolysis, with NITs photolysis coefficients about 25-50 times larger than corresponding HNO3 photolysis coefficients. Short-term measurements of nitrous acid (HONO) at this location show a clear daytime peak, with average peak mixing ratios ranging from 3 to 6 pptv. The model reproduces the general shape of the diurnal HONO profile only when NITs photolysis is included, but the magnitude of the daytime peak mixing ratio is under-predicted. This under-prediction is somewhat reduced if HONO yields from NITs photolysis are assumed to be close to unity. The combined NOx and HONO analysis suggests that the upper limit of the ratio of NITs : HNO3 photolysis coefficients is about 100. The largest simulated relative impact of NITs photolysis is in the tropical and subtropical marine boundary layer, with peak local enhancements ranging from factors of 5 to 20 for NOx, 1.2 to 1.6 for OH, and 1.1 to 1.3 for ozone. Since the spatial extent of the sea-salt aerosol (SSA) impact is limited, global impacts on NOx, ozone, and OH mass burdens are small ( ∌ 1-3 %). We also present preliminary analysis showing that particulate nitrate photolysis in accumulation-mode aerosols (predominantly over continental regions) could lead to ppbv-level increases in ozone in the continental boundary layer. Our results highlight the need for more comprehensive long-term measurements of NOx, and related species like HONO and sea-salt particulate nitrate, to better constrain the impact of particulate nitrate photolysis on marine boundary layer oxidant chemistry. Further field and laboratory studies on particulate nitrate photolysis in other aerosol types are also needed to better understand the impact of this process on continental boundary layer oxidant chemistry

    ADHM/Nahm Construction of Localized Solitons in Noncommutative Gauge Theories

    Full text link
    We study the relationship between ADHM/Nahm construction and ``solution generating technique'' of BPS solitons in noncommutative gauge theories. ADHM/Nahm construction and ``solution generating technique'' are the most strong ways to construct exact BPS solitons. Localized solitons are the solitons which are generated by the ``solution generating technique.'' The shift operators which play crucial roles in ``solution generating technique'' naturally appear in ADHM/Nahm construction and we can construct various exact localized solitons including new solitons: localized periodic instantons (=localized calorons) and localized doubly-periodic instantons. Nahm construction also gives rise to BPS fluxons straightforwardly from the appropriate input Nahm data which is expected from the D-brane picture of BPS fluxons. We also show that the Fourier-transformed soliton of the localized caloron in the zero-period limit exactly coincides with the BPS fluxon.Comment: 30 pages, LaTeX, 3 figures; v3: minor changes, references added; v4: references added, version to appear in PR

    Multicloud solutions with massless and massive monopoles

    Get PDF
    Certain spontaneously broken gauge theories contain massless magnetic monopoles. These are realized classically as clouds of non-Abelian fields surrounding one or more massive monopoles. In order to gain a better understanding of these clouds, we study BPS solutions with four massive and six massless monopoles in an SU(6) gauge theory. We develop an algebraic procedure, based on the Nahm construction, that relates these solutions to previously known examples. Explicit implementation of this procedure for a number of limiting cases reveals that the six massless monopoles condense into four distinct clouds, of two different types. By analyzing these limiting solutions, we clarify the correspondence between clouds and massless monopoles, and infer a set of rules that describe the conditions under which a finite size cloud can be formed. Finally, we identify the parameters entering the general solution and describe their physical significance.Comment: 58 pages, 5 figure

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→Ό+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→Ό+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă  l’Energie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
    • 

    corecore